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Scientific White Paper 
 

Sentophagy Formula, increases autophagy and mitophagy. Includes 
phytotherapeutic extracts of: Taraxacum officinale, Camellia sinensis, Berberis 
vulgaris, Curcuma longa, and Cinnamomum verum. Biological Actions, Molecular 
Mechanisms, and Their Effects. 
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Sentophagy Formula is a senolytic formulation of five (5) plant species known to induce 
autophagy and mitophagy, including Taraxacum officinale, Camellia senensis, Curcuma longa, 
Berberis vulgaris and Cinnamomum verum. This formula is a synergistic herbal analog providing 
senolytic cellular support, increasing the efficiency of autophagy and mitophagy. 
 
Cellular Senescence  
Cellular senescence is a permanent state of 
cell cycle arrest induced by cellular stresses. 
When the cell is in senescence, its protein 
expression profile usually changes. When 
DNA damage occurs, the cell cycle promoter 
gene is down-regulated, and the cell cycle 
inhibitory gene is up-regulated, and cells are 
induced to block and lead in through different 
signaling pathways.  
 

 
Figure 1. Structure changes of cell senescence 

 
Cellular senescence provides sufficient time 
for DNA damage repair to maintain the 
stability of the cell's genome. Cellular 
senescence requires signal transduction. 
When the phenotype associated with cell 
senescence occurs, such as growth arrest, and 
formation of senescence-associated 

heterochromatin sites, the maintenance of the 
pathway is no longer required.  
 
Senescence During the Aging Process 
During the aging process, senescent cells 
(SCs) increasingly accumulate in tissues, 
causing a loss of tissue-repair capacity 
because of cell cycle arrest in progenitor cells 
and produce proinflammatory molecules 
which are known as the senescence-
associated secretory phenotype (SASP) 
which contribute to the development of 
various age-related diseases.  
 
Pathway regulation 
The process of cellular senescence can be 
regulated by various factors and pathways in 
the cellular senescence signaling pathway. 
Cell senescence is similar to the state of cell 
cycle arrest, and the difference is that 
senescent tumor cells do not have activation 
of the apoptotic pathway.  

The Function of Cell Autophagy 
Autophagy is a fundamental biological 
process by removing damaged organelles, 
but disordered autophagy is involved in a 
variety of diseases including 



                                      
 

 2 

neurodegeneration and microbial infection. 
Autophagy is activated in response to adverse 
environmental conditions such as the 
deprivation of nutrients, hypoxia, pathogen 
infection, radiation and oxidative stress as a 
survival mechanism. This process plays a 
role in cellular homeostasis, development, 
and longevity and has many effects on 
cellular renovation. Autophagy can 
contribute to whole-body rejuvenation and is 
considered a physiologic cytoprotective or 
pro-survival mechanism.  Completely 
uncontrolled or excessive autophagy has 
been associated with cell death. Defective 
autophagy has been linked to aging and 
neurodegenerative disorders.  
 
Autophagy is an evolutionary conserved 
catabolic process used by eukaryotic cells for 
the degradation of damaged or superfluous 
proteins and organelles. There are roughly 
three main forms of autophagy: Macro-
autophagy is the major type of autophagy. It 
involves the sequestering of cellular 
constituents in double-membrane vesicles 
(autophagosomes) and subsequent delivery 
to lysosomes for degradation. It can be 
nonselective or selective. Nonselective 
autophagy is used for the turnover of bulk 
cytoplasm under starvation conditions. 
Selective autophagy targets damaged or 
superfluous mitochondria (mitophagy), 
peroxisomes (pexophagy), lipid droplets 
(lipophagy) and microbes (xenophagy). 
Micro-autophagy is the second type of 
autophagy. The lysosome itself engulfs small 
components of the cytoplasm by inward 
invagination of the lysosomal membrane. 
Chaperone-mediated autophagy does not 
involve membrane reorganization, instead, 
substrate proteins directly translocate across 

the lysosomal membrane during chaperone-
mediated autophagy.  
 
Mitophagy 
Mitophagy is an essential catabolic pathway 
by which cytoplasmic materials are delivered 
to and degraded in the mitochondrial 
lysosome. This highly regulated pathway is 
physiologically essential, ensuring nutrient 
recycling, and cellular and organismal 
homeostasis during stress. It is activated by 
various endogenous and exogenous stimuli. 
Mitophagy is required to allow sessile 
organisms to cope with biotic or abiotic stress 
conditions. Defective mitophagy has been 
associated with aging and neuronal 
degeneration disorders.  
 
Senolytic drugs 
Senolytic drugs are agents that selectively 
induce apoptosis of senescent cells. These 
cells accumulate in many tissues with aging 
and at sites of pathology in multiple chronic 
diseases. Targeting senescent cells using 
genetic, pharmacological, or herbal plant-
based approaches delays, prevents, or 
alleviates multiple age-related phenotypes, 
chronic diseases, geriatric syndromes, and 
loss of physiological resilience. Among the 
chronic conditions successfully treated by 
depleting senescent cells are frailty, cardiac 
dysfunction, diabetes, liver steatosis, 
osteoporosis, vertebral disk degeneration, 
and pulmonary fibrosis. Genetic evidence has 
demonstrated that clearance of SCs can delay 
aging and extend healthspan. Senolytics have 
been developed to treat various age-related 
diseases. Natural compounds have been 
discovered to be effective senolytic agents, 
such as quercetin, fisetin, spermidine, and 
curcumin.  
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Active Herbal Ingredients 
 
Taraxacum officinale, A source of the autophagy inducing flavonoids quercetin, luteolin, 
apigenin, and luteolin-7-glucoside Extracts have anti-influenza, anti-retrovirus activity, 
antioxidant and hepatoprotective effects. Ethanol extracts reduce inflammation and inhibit 
angiogenesis. Dandelion contains sesquiterpene lactones (believed to have anti-inflammatory and 
anti-cancer effects). 
  
Camellia sinensis, A source of the autophagy inducing polyamine Spermidine. Camellia sinensis 
has diverse pharmacological activities, including anti-hyperglycemia, antioxidative, anti-obesity 
and antitumor activities. the major theaflavins in black tea are theaflavin (TF1), theaflavin-3-
gallate (TF2A), theaflavin-3'-gallate (TF2B) and theaflavin-3,3'-digallate (TF3) Cs also has a 
beneficial effect on immunomodulatory activity that is attributed to dietary fibers and specific 
polyphenols. The polyphenolic compounds in tea demonstrate potential antitumor and anti-oxidant 
effects in various cancer cell lines, including gastric, colon, and lung. 
 
Berberis vulgaris, Berberine, a major isoquinoline alkaloid present in Berberis vulgaris, is a 
potent inhibitor of inflammation and has shown anti-diabetic activity. Type 2 diabetes and obesity 
are rapidly becoming a worldwide epidemic and they are associated with the development of 
insulin resistance. Insulin resistance is believed to be an underlying feature of type 2 diabetes and 
metabolic syndrome. Berberine has a wide range of pharmacologic actions, such as antidiarrheic, 
anticancer, and antiinflammation. It has been used for the treatment of infective and inflammatory 
disorders. It improves insulin resistance, lowers blood sugar, and treats lipid metabolism disorders 
by activating the AMP activated protein kinase (AMPK) pathways. Berberine inhibits gene 
expression of proinflammatory cytokines in adipose tissue of obese mice and suppresses 
inflammatory response through AMPK activation in macrophages, while demonstrating its anti-
inflammatory potency. 
 
Curcuma longa, or Turmeric root, and it's curcuminoid constituents have demonstrated properties 
consistent with decreases in inflammatory stress signaling and increases in protective signaling. 
Curcumin is known to have anti-aging, anti-oxidant, anti-inflammatory, anti-arthritic, and anti-
cancer effects and increases BDNF while having a positive effect on Alzheimer's disease and 
depression.  It is also anti-rheumatic, and anti-microbial. 
 
Cinnamomum verum, Cinnamon health benefits are attributed to its content of a few specific types 
of antioxidants, including polyphenols, phenolic acid, and flavonoids. These compounds work to 
fight oxidative stress in the body and aid in the prevention of chronic disease. the effects of 
cinnamon on life span implicated major longevity pathways. These include the DAF-16 
transcription factor in the insulin signaling pathway, which promotes the expression of stress 
resistance and the longevity genes. Cinnamon activates the insulin signaling pathway, anti-
oxidative pathway and serotonin signaling for its lifespan prolonging effect. 
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A B S T R A C T

Cellular senescence is a hallmark of aging, it is a permanent state of cell cycle arrest induced by cellular stresses.
During the aging process, senescent cells (SCs) increasingly accumulate in tissues, causing a loss of tissue-repair
capacity because of cell cycle arrest in progenitor cells and produce proinflammatory and matrix-degrading
molecules which are known as the senescence-associated secretory phenotype (SASP), and thereby contribute to
the development of various age-related diseases. Genetic evidence has demonstrated that clearance of SCs can
delay aging and extend healthspan. Senolytics, small molecules that can selectively kill SCs, have been devel-
oped to treat various age-related diseases. In recent years, emerging natural compounds have been discovered to
be effective senolytic agents, such as quercetin, fisetin, piperlongumine and the curcumin analog. Some of the
compounds have been validated in animal models and have great potential to be pushed to clinical applications.
In this review, we will discuss cellular senescence and its potential as a target for treating age-related diseases,
and summarize the known natural compounds as senolytic agents and their applications.

1. Introduction

Aging is an irreversible process characterized by a progressive loss
of physiological integrity, causing impaired function and increased
vulnerability to death (López-Otín et al., 2013). It has been shown to be
the primary risk factor for major age-related diseases, such as cancer,
diabetes, cardiovascular disorders, and neurodegenerative diseases. The
hallmarks of aging, such as cellular senescence, genomic instability,
telomere attrition, epigenetic alterations, and mitochondrial dysfunc-
tion, have been described previously (López-Otín et al., 2013). Accu-
mulating evidence suggests that targeting some of the aging hallmarks,
for example, cellular senescence, can significantly improve human
health and extend healthspan (Childs et al., 2017; He and Sharpless,
2017; Kirkland and Tchkonia, 2017; Naylor et al., 2013; Niedernhofer
and Robbins, 2018).

Cellular senescence is a phenomenon where normal cells stop di-
viding. Senescent cells (SCs) accumulate in various tissues during the
aging process. On one hand, cellular senescence blocks the propagation
of damaged cells in order to maintain tissue homeostasis (Demaria

et al., 2014). On the other hand, it plays a causative role in irreparable,
deleterious cellular damage and loss of tissue homeostasis, which re-
lates to aging and aging-associated diseases (Campisi and d’Adda di
Fagagna, 2007). Accumulating evidence demonstrates that elimination
of SCs can reduce age-dependent deterioration in tissues and organs,
which is useful in improving the treatment of age-associated diseases
and alleviating the side effects of therapy-induced senescence (Baker
et al., 2011; Campisi and d’Adda di Fagagna, 2007; Childs et al., 2015;
He and Sharpless, 2017; Kirkland and Tchkonia, 2017; Naylor et al.,
2013; Niedernhofer and Robbins, 2018).

Small molecules that can selectively kill SCs, called senolytics, have
the potential to both prevent and treat age-related diseases, thereby
extending healthspan. Until now, several classes of senolytic agents,
including natural compounds such as quercetin (Geng et al., 2018;
Hwang et al., 2018; Zhu et al., 2015), fisetin (Yousefzadeh et al., 2018),
piperlongumine (Wang et al., 2016b; Zhang et al., 2018), and curcumin
analog EF24 (Li et al., 2019), and targeted therapeutics, which are
mainly senolytic target inhibitors, have been identified. Compared to
the targeted senolytics, natural senolytic compounds are less potent, but
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AbstrAct
A confounding aspect of biological ageing is the nature and role of senescent 

cells. It is unclear whether the three major types of cellular senescence, namely 
replicative senescence, oncogene-induced senescence and DNA damage-induced 
senescence are descriptions of the same phenomenon instigated by different sources, 
or if each of these is distinct, and how they are associated with ageing. Recently, 
we devised an epigenetic clock with unprecedented accuracy and precision based on 
YHU\�VSHFL¿F�'1$�PHWK\ODWLRQ�FKDQJHV�WKDW�RFFXU�LQ�IXQFWLRQ�RI�DJH��8VLQJ�SULPDU\�
cells, telomerase-expressing cells and oncogene-expressing cells of the same genetic 
background, we show that induction of replicative senescence (RS) and oncogene-
induced senescence (OIS) are accompanied by ageing of the cell. However, senescence 
induced by DNA damage is not, even though RS and OIS activate the cellular DNA 
damage response pathway, highlighting the independence of senescence from cellular 
ageing. Consistent with this, we observed that telomerase-immortalised cells aged in 
culture without having been treated with any senescence inducers or DNA-damaging 
DJHQWV��UH�DI¿UPLQJ�WKH�LQGHSHQGHQFH�RI�WKH�SURFHVV�RI�DJHLQJ�IURP�WHORPHUHV�DQG�
senescence. Collectively, our results reveal that cellular ageing is distinct from cellular 
senescence and independent of DNA damage response and telomere length.

IntroductIon

While ageing at the level of the organism is obvious 
and easily understood, the biological aspect of ageing is 
IDU�IURP�FOHDU��(YHQ�WKH�GH¿QLWLRQ�RI�DJHLQJ�LV�QRW�VHOI�
evident. It is reasonable to consider ageing as a natural 
biological process that in time, leads to the eventual failure 
of organs, as it is this that gives rise to the phenotypic 
features of ageing; from the benign, such as thinning of the 
skin and greying of the hair, to the pathological, such as 
cataracts and cardiovascular disease. Understanding why 
WLVVXHV�DQG�FHOOV�IXQFWLRQ�VXE�RSWLPDOO\�DQG�HYHQWXDOO\�IDLO�
in time, will greatly aid our understanding of ageing. 

One model of ageing posits that the failure of tissues 
to function properly is due to the depletion of stem cells 
[1]. Stem cells, which are the reservoir cells of tissues, 
PD\�KDYH�¿QLWH�FDSDFLWLHV�RI�SUROLIHUDWLRQ�VXFK�DV�EHLQJ�
limited by the lengths of their telomeres. Their eventual 
GHSOHWLRQ� OHDGV� WR� WKH� GH¿FLW� RI� SURSHUO\� IXQFWLRQLQJ�
cells, causing phenotypic changes that constitute ageing. 

While this model is plausible and supported by strong 
FLUFXPVWDQWLDO�HYLGHQFH��LW�LV�SUHVHQWO\�GLI¿FXOW�WR�SURYH�
RU� UHIXWH� GLUHFWO\�� QRW� OHDVW� EHFDXVH� WKH� LGHQWL¿FDWLRQ�
RI� VSHFL¿F� WLVVXH� VWHP� FHOOV� LV� GLI¿FXOW�� 6LPLODUO\�� WKH�
association between telomere length and ageing, although 
ZLGHO\�UHSRUWHG��LV�QRW�ZLWKRXW�LQFRQVLVWHQFLHV�>���@��

There is however, another model of ageing which 
is based on the observation that the number of senescent 
cells in the body increases in function of organism age 
>���@�� :KLOH� WKLV� FRXOG� EH� LQWHUSUHWHG� WR� PHDQ� WKDW�
senescent cells cause ageing, it could also equally mean 
that senescent cells are a consequence of ageing. In this 
regard, it is noteworthy that there is increasing evidence 
to demonstrate that senescent cells are not benign. Instead 
WKH\�VHFUHWH�ELR�FKHPLFDOV�WKDW�DUH�GHWULPHQWDO�WR�QRUPDO�
IXQFWLRQLQJ� RI� QHLJKERXULQJ� FHOOV�� 7KH� VHQHVFHQFH�
associated secretory phenotype (SASP) proteins include 
cytokine, chemokines and proteases [8, 9] and their 
paracrine activities are very diverse and include oncogenic 
characteristics that stimulate cellular proliferation and 
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Macroautophagy is a cellular catabolic process that involves the sequestration of cyto-
plasmic constituents into double-membrane vesicles known as autophagosomes, which
subsequently fuse with lysosomes, where they deliver their cargo for degradation. The
main physiological role of autophagy is to recycle intracellular components, under condi-
tions of nutrient deprivation, so as to supply cells with vital materials and energy. Selective
autophagy also takes place in nutrient-rich conditions to rid the cell of damaged organelles or
protein aggregates that would otherwise compromise cell viability. Mitophagy is a selec-
tive type of autophagy, whereby damaged or superfluous mitochondria are eliminated
to maintain proper mitochondrial numbers and quality control. While mitophagy shares
key regulatory factors with the general macroautophagy pathway, it also involves distinct
steps, specific for mitochondrial elimination. Recent findings indicate that parkin and the
phosphatase and tensin homolog-induced putative kinase protein 1 (PINK1), which have
been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s
disease, also regulate mitophagy and function to maintain mitochondrial homeostasis.
Here, we survey the molecular mechanisms that govern the process of mitophagy and dis-
cuss its involvement in the onset and progression of neurodegenerative diseases during
aging.

Keywords: aging, autophagy, neuron, mitochondria, mitophagy, neurodegeneration, parkin, PINK1

INTRODUCTION
Macroautophagy (henceforth referred to as autophagy) is a high-
regulated catabolic process responsible for the lysosomal degra-
dation of cytoplasmic constituents. The main characteristic of
the autophagic pathway is the formation of a double-membrane
structure known as autophagosome, which engulfs cytoplasmic
cargo and delivers it to lysosomes for degradation (Klionsky,
2007). In direct correlation with the large variety of autophagy
substrates, including cytoplasmic proteins, ribosomes, organelles,
bacteria and viruses, autophagy defects have been associated
with a wide range of human disorders, such as cancer, autoim-
mune and neurodegenerative diseases (Mizushima et al., 2008).
The main physiological role of autophagy is to supply the cell
with essential materials and energy by recycling intracellular
components, under conditions of nutrient deprivation when
nutrients cannot be obtained from the extracellular environment.
Selective types of autophagy, including pexophagy (Sakai et al.,
2006), ribophagy (Kraft et al., 2008), ER-phagy (Bernales et al.,
2007), protein selective chaperone-mediated autophagy (Cuervo
et al., 2004), nucleophagy (Mijaljica et al., 2010), mitochon-
drial autophagy (mitophagy; Lemasters, 2005) take place under
nutrient-rich conditions to rid the cell of damaged organelles
or protein aggregates that would otherwise compromise cell
viability.

Mitochondria are double-membrane-bound organelles, essen-
tial for energy production and cellular homeostasis in eukaryotic
cells. In addition, mitochondria have vital roles in calcium sig-
naling and storage, metabolite synthesis, and apoptosis (Kroemer
et al., 2007). Thus, mitochondrial biogenesis, as well as, elim-
ination of damaged and superfluous mitochondria are highly

regulated processes. Mitophagy is a selective type of autophagy
that mediates the removal of mitochondria. Through mitophagy
cells regulate mitochondrial number in response to their metabolic
state and also implement a quality control system for proper elim-
ination of damaged mitochondria. The process of mitophagy is
highly regulated and conserved from yeast to mammals (Table 1).
While mitophagy shares key regulatory factors with the general
autophagy pathway, it also involves distinct steps, specific for
mitochondrial elimination. Studies in yeast identified specific
genes that are required for mitophagy, but not for other types
of autophagy (Kanki et al., 2009a; Kanki and Klionsky, 2010),
demonstrating the selective regulation of this process. Despite the
fact that the actual selection of mitochondria for degradation is a
still obscure part of the process, recent studies shed light on the
mechanisms that govern mitophagy and regulate removal of mito-
chondria during developmental processes or upon mitochondrial
damage. In this review, we survey the molecular mechanisms that
mediate mitophagy and also highlight how defects in this process
may contribute to the onset and progression of neurodegenerative
diseases during aging.

MOLECULAR MECHANISMS OF MITOPHAGY
The molecular mechanisms of mitophagy were studied in the
yeast Saccharomyces cerevisiae. The yeast uth1 gene encodes a
Sad1p/UNC-84 (SUN)-domain protein that is located in the
outer mitochondrial membrane and is essential for the specific
autophagic elimination of mitochondria upon nitrogen starvation
or rapamycin treatment, without influencing general autophagy
(Kissova et al., 2004). The protein Aup1, a member of pro-
tein phosphatase 2C (PP2C) superfamily that is located in the

www.frontiersin.org December 2012 | Volume 3 | Article 297 | 1
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Abstract:� Although� autophagy� has� widely� been� conceived� as� a� selfͲdestructive� mechanism� that� causes� cell� death,
accumulating� evidence� suggests� that� autophagy� usually� mediates� cytoprotection,� thereby� avoiding� the� apoptotic� or
necrotic�demise�of�stressed�cells.�Recent�evidence�produced�by�our�groups�demonstrates�that�autophagy�is�also�involved�in
pharmacological�manipulations� that� increase� longevity.�Exogenous� supply�of� the�polyamine� spermidine� can�prolong� the
lifespan�of� (while� inducing�autophagy� in)�yeast,�nematodes�and� flies.�Similarly,�resveratrol�can�trigger�autophagy� in�cells
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stress.� These� beneficial� effects� are� lost� when� essential� autophagy� modulators� are� genetically� or� pharmacologically
inactivated,� indicating� that� autophagy� is� required� for� the� cytoprotective� and/or� antiͲaging� effects� of� spermidine� and
resveratrol.�Genetic�and�functional�studies�indicate�that�spermidine�inhibits�histone�acetylases,�while�resveratrol�activates
the� histone� deacetylase� Sirtuin� 1� to� confer� cytoprotection/longevity.� Although� it� remains� elusive� whether� the� same
histones�(or�perhaps�other�nuclear�or�cytoplasmic�proteins)�act�as�the�downstream�targets�of�spermidine�and�resveratrol,
these�results�point�to�an�essential�role�of�protein�hypoacetylation�in�autophagy�control�and�in�the�regulation�of�longevity.��
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Effect of Spermidine and Other 
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trigger its effects is the MAPK pathway.  Conclusions:  Given 
that polyamines can interact with many molecules, it is not 
surprising that they affect aging via several mechanisms. 
Many of these mechanisms discovered so far have already 
been linked with aging and by acting on all of these mecha-
nisms, polyamines may be strong regulators of aging. 

 © 2014 S. Karger AG, Basel 

 Introduction 

 Aging is a multifaceted process, probably caused by a 
myriad of interacting factors and with consequences at all 
levels of the organism. Research into the subject has re-
vealed that factors leading to aging are as varied as sus-
tained exposure to cellular stress, chronic inflammation, 
dysregulation of lipid metabolism, autophagy and cell 
survival and death. These factors will impinge upon each 
other in complex interactions. Effective interventions 
against aging will need to be able to impact as many as 
possible of the factors causing aging and their interac-
tions. Dietary restriction may be one such intervention 
with its wide-ranging effects. Polyamines, especially sper-
midine, have also emerged as strong potential candidates 

 Key Words 
 Spermidine · Polyamines · Longevity · Aging · Autophagy · 
Inflammation · Metabolism · Cell survival 

 Abstract 
  Background:  Spermidine, a naturally occurring polyamine, 
has recently emerged as exhibiting anti-aging properties. Its 
supplementation increases lifespan and resistance to stress, 
and decreases the occurrence of age-related pathology and 
loss of locomotor ability. Its mechanisms of action are just 
beginning to be understood.  Objectives:  An up-to-date 
overview of the so far identified mechanisms of action of 
spermidine and other polyamines on aging is presented. 
 Methods:  Studies of aging and of the molecular effects of 
polyamines in general and spermidine in particular are used 
to synthesize our knowledge on what molecular mecha-
nisms spermidine and other polyamines trigger to positively 
affect aging.  Results:  Autophagy is the main mechanism of 
action of spermidine at the molecular level. However, recent 
research shows that spermidine can act via other mecha-
nisms, namely inflammation reduction, lipid metabolism 
and regulation of cell growth, proliferation and death. It is 
suggested that the main pathway used by spermidine to 
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Abstract: Accumulated evidence indicates that autophagy is a response of cancer cells to various
anti-cancer therapies. Autophagy is designated as programmed cell death type II, and is characterized
by the formation of autophagic vacuoles in the cytoplasm. Numerous herbs, including Chinese herbs,
have been applied to cancer treatments as complementary and alternative medicines, supplements,
or nutraceuticals to dampen the side or adverse effects of chemotherapy drugs. Moreover, the
tumor suppressive actions of herbs and natural products induced autophagy that may lead to cell
senescence, increase apoptosis-independent cell death or complement apoptotic processes. Hereby,
the underlying mechanisms of natural autophagy inducers are cautiously reviewed in this article.
Additionally, three natural compounds—curcumin, 16-hydroxycleroda-3,13-dien-15,16-olide, and
prodigiosin—are presented as candidates for autophagy inducers that can trigger cell death in a
supplement or alternative medicine for cancer therapy. Despite recent advancements in therapeutic
drugs or agents of natural products in several cancers, it warrants further investigation in preclinical
and clinical studies.

Keywords: autophagy inducer; autophagy inhibitor; natural compound; cancer therapy

1. Introduction

Cancer is a group of diseases involving out-of-control of cell growth due to the accumulation of
defects, or mutations, in their DNA and with an impendence to invade or spread to other parts of the
body [1]. In 2015, about 90.5 million people were diagnosed with cancer [2]. About 14.1 million new
cases occur each year (not including skin cancer other than melanoma) [3]. Consequently, it causes
about 8.8 million (15.7%) human deaths [4]. Anti-cancer drugs including 5-fluorouracil (5-FU), cisplatin,
etoposide, paclitaxel, and doxorubicin are commonly used to treat various cancers, such as cisplatin and
doxorubicin in ovarian cancer, 5-FU in colon and gastric cancer, paclitaxel and doxorubicin in breast
cancer, and etoposide in small-cell lung cancer. However, these chemotherapeutic agents have evident
side effects such as nausea, vomiting, loss of appetite, decreased immunity, oral ulcers, and other
adverse effects [5]. In general, the anti-cancer drugs, such as cisplatin and doxorubicin favor abnormal
triggering via programmed cell death (PCD) such as apoptosis, necrosis, necroptosis, and autophagy
in normal cells as well as abolishing inflammation of damaged cells. Remarkably, apoptosis and

Int. J. Mol. Sci. 2017, 18, 1412; doi:10.3390/ijms18071412 www.mdpi.com/journal/ijms
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Abstract. Cancer of the prostate gland is the most common 
invasive malignancy and the second leading cause of cancer-
related death in human males. Many studies have shown 
that black tea reduces the risk of several types of cancer. We 
studied the effects of active extracts of black tea and the black 
WHD�SRO\SKHQROV�WKHDÁDYLQV��7)V���RQ�WKH�FHOOXODU�SUROLIHUD-
tion and mitochondria of the human prostate cancer cell line 
PC-3. Our studies revealed that Yinghong black tea extracts 
�<%7���$VVDP�EODFN�WHD�H[WUDFWV��$%7��DQG�7)V�LQKLELWHG�
cell proliferation in a dose-dependent manner. We also 
VKRZHG�WKDW�7)V��<%7�DQG�$%7�DIIHFWHG�WKH�PRUSKRORJ\�RI�
PC-3 cells and induced apoptosis or even necrosis in PC-3 
FHOOV��,Q�DGGLWLRQ��LW�ZDV�REVHUYHG�WKDW�WKH�VDPSOHV�VLJQLÀ-
cantly caused loss of the mitochondrial membrane potential, 
release of cytochrome c from the intermembrane space into 
WKH�F\WRVRO��GHFUHDVH�RI�WKH�$73�FRQWHQW�DQG�DFWLYDWLRQ�RI�
caspase-3 compared with the control. Taken together, these 
findings suggest that black tea could act as an effective 
DQWL�SUROLIHUDWLYH�DJHQW� LQ�3&���FHOOV�� DQG�7)V��<%7�DQG�
$%7�LQGXFHG�DSRSWRVLV�RI�3&���FHOOV�WKURXJK�PLWRFKRQGULDO�
dysfunction.

Introduction

Tea, one of the most widely consumed beverages in the 
world, has diverse pharmacological activities, including 
anti-hyperglycemia, antioxidative, anti-obesity and antitumor 
DFWLYLWLHV��������*UHHQ�WHD��FRQVXPHG�DW�KLJK�OHYHOV�LQ�$VLDQ�
countries, and black tea, consumed primarily in Western 
countries, are derived from leaves of Camellia sinensis������

During the past decades, numerous in vitro and in vivo studies 
have showed the possible protective effects of tea and tea poly-
SKHQROV�RQ�FDQFHU�DQG�RWKHU�GLVHDVHV��������&DWHFKLQV�DUH�WKH�
most abundant polyphenol in green tea, whereas the typical 
pigments in black tea are formed from catechin oxidation 
GXULQJ�IHUPHQWDWLRQ�ZKLFK�LQFOXGHV�WKHDÁDYLQV��WKHDUXELJLQV�
DQG�WKHDEURZQLQV������$PRQJ�WKHP��WKH�PDMRU�WKHDÁDYLQV�LQ�
EODFN�WHD�DUH�WKHDÁDYLQ��7)����WKHDÁDYLQ���JDOODWH��7)�$���
WKHDÁDYLQ��
�JDOODWH� �7)�%�� DQG� WKHDÁDYLQ����
�GLJDOODWH�
�7)����)LJ������7KHUHIRUH��WKH�PRQRPHULF�SRO\SKHQRO�FRQWHQW��
of black tea is low. However, it is not diminished for black 
tea during partial polymerization or other alterations in the 
IHUPHQWDWLRQ�RI� WHD� OHDYHV� ������ DV� LW�ZDV�SURYHG� WKDW�7)��
VKRZHG�KLJKHU�DQWLR[LGDWLYH�DFWLYLW\�WKDQ�(*&*������

$SRSWRVLV� FDQ� RFFXU� YLD� WKH� PLWRFKRQGULD�� 7KH�
mitochondria is essential for energy production, and is 
LQYROYHG�LQ�UHDFWLYH�R[\JHQ�VSHFLHV��526��JHQHUDWLRQ�DQG�
LQGXFWLRQ�RI�DSRSWRVLV�������,Q�PRVW�WLVVXHV��WKH�PLWRFKRQGULD�
DFFRXQWV� IRU� WKH�JHQHUDWLRQ�RI�a����RI� WKH�$73�QHHGHG�
E\� WKH� FHOOV� ������ 0LWRFKRQGULDO� G\VIXQFWLRQ� FDXVHV�
SHUPHDELOL]DWLRQ�RI�WKH�RXWHU�PLWRFKRQGULDO�PHPEUDQH������
and then leads to the release of the intermembrane space 
proteins such as cytochrome c, which ultimately triggers 
DSRSWRWLF� FHOO� GHDWK� ������ 7KHUHIRUH�� WKH� PLWRFKRQGULDO�
permeability transition event could serve as an early 
indicator of the initiation of apoptosis. This mitochondrial 
permeability transition process results in the collapse of the 
electrochemical gradient across mitochondrial membrane 
and thus could be measured by noting the changes of the 
PLWRFKRQGULDO�PHPEUDQH�SRWHQWLDO������

Prostate cancer is one of the leading causes of human 
PDOH� GHDWKV� WKURXJKRXW� WKH� ZRUOG� ������ ,W� LV� D� JURXS� RI�
FDQFHURXV�FHOOV��D�PDOLJQDQW�WXPRU��WKDW�JURZ�PRVWO\�IURP�
WKH�RXWHU�SDUW�RI�WKH�SURVWDWH�������,Q�RXU�SUHYLRXV�VWXG\��ZH�
evaluated time- and dose-dependent cytotoxicity of EGCG 
and Zn2+�RQ�3&���FHOOV�E\�WKH�077�DVVD\�������:KHUHDV��LQ�
another study, we found that EGCG, Zn2+ and EGCG+Zn2+ 
induced apoptosis or even necrosis of PC-3 cells through the 
mitochondria-mediated pathway, and free Zn2+ enhanced the 
effects of EGCG on PC-3 cells due to its interactions with 
PLWRFKRQGULD� ������ ,Q� WKH� SUHVHQW� VWXG\��ZH� LQYHVWLJDWHG�
effects of black tea extracts on the viability and morphology 
of PC-3 cells, the functions of mitochondria of PC-3 cells, 

Active extracts of black tea (Camellia Sinensis) induce apoptosis 
of PC-3 prostate cancer cells via mitochondrial dysfunction

6+,/,�681���6+816+81�3$1���$,4,1*�0,$2���&$,-,1�/,1*��� 
6+,�3$1*���-,1&+,�7$1*���'21*�&+(1��and��&+$2<,�=+$2

'ULQN�3ODQW�5HVHDUFK�,QVWLWXWH�7HD�5HVHDUFK�&HQWHU��*XDQJGRQJ�$FDGHP\�RI�
$JULFXOWXUDO�6FLHQFHV��*XDQJ]KRX��*XDQJGRQJ���������3�5��&KLQD

5HFHLYHG�0DUFK������������$FFHSWHG�0D\��������

'2,����������RU����������
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